产品信息查询
产品 技术 新闻 资料
首页 > 产品中心 > 电源管理 > DC降压型芯片 > Buck降压型芯片 >CXSD62102A单相定时同步的PWM控制器驱动N通道mosfet功率因数调制(PFM)或脉宽调制(PWM)模式下都能瞬态响应和准确的直流电压输出
CXSD62102A单相定时同步的PWM控制器驱动N通道mosfet功率因数调制(PFM)或脉宽调制(PWM)模式下都能瞬态响应和准确的直流电压输出
22

CXSD62102A降压在not中产生低压芯片组或RAM电源单相,恒定时间,同步PWM控制器,驱动N通道mosfet。CXSD62102A降压以在笔记本电脑中产生低压芯片组或RAM电源。

CXSD62102A单相定时同步的PWM控制器驱动N通道mosfet功率因数调制(PFM)或脉宽调制(PWM)模式下都能瞬态响应和准确的直流电压输出
产品手册
样品申请

样品申请

产品简介

目录h3s嘉泰姆

1.产品概述                       2.产品特点h3s嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 h3s嘉泰姆
5.产品封装图                     6.电路原理图                   h3s嘉泰姆
7.功能概述                        8.相关产品h3s嘉泰姆

一,产品概述(General Description)    h3s嘉泰姆


  The CXSD62102A is a single-phase, constant on-time,synchronous PWM controller, which drives N-channel MOSFETs. The CXSD62102A steps down high voltage to generate low-voltage chipset or RAM supplies in notebook computers.h3s嘉泰姆
  The CXSD62102A provides excellent transient response and accurate DC voltage output in either PFM or PWM Mode.In Pulse Frequency Mode (PFM), the CXSD62102A provides very high efficiency over light to heavy loads with loading-h3s嘉泰姆
modulated switching frequencies. In PWM Mode, the converter works nearly at constant frequency for low-noise requirements.h3s嘉泰姆
  The CXSD62102A is equipped with accurate positive current limit, output under-voltage, and output over-voltage protections, perfect for NB applications. The Power-On-Reset function monitors the voltage on VCC to prevent wrong operation during power-on. The CXSD62102A has a 1ms digital soft start and built-in an integrated output discharge device for soft stop. An internal integrated soft-h3s嘉泰姆
start ramps up the output voltage with programmable slew rate to reduce the start-up current. A soft-stop function actively discharges the output capacitors.h3s嘉泰姆
  The CXSD62102A is available in 16pin TQFN3x3-16 package respectively.h3s嘉泰姆
二.产品特点(Features)h3s嘉泰姆


Adjustable Output Voltage from +0.6V to +3.3Vh3s嘉泰姆
- 0.6V Reference Voltageh3s嘉泰姆
- ±0.6% Accuracy Over-Temperatureh3s嘉泰姆
Operates from An Input Battery Voltage Range ofh3s嘉泰姆
+1.8V to +28Vh3s嘉泰姆
REFIN Function for Over-clocking Purpose fromh3s嘉泰姆
0.5V~2.5V rangeh3s嘉泰姆
Power-On-Reset Monitoring on VCC pinh3s嘉泰姆
Excellent line and load transient responsesh3s嘉泰姆
PFM mode for increased light load efficiencyh3s嘉泰姆
Programmable PWM Frequency from 100kHz to 500kHzh3s嘉泰姆
Built in 30A Output current driving capabilityh3s嘉泰姆
Integrate MOSFET Driversh3s嘉泰姆
Integrated Bootstrap Forward P-CH MOSFETh3s嘉泰姆
Power Good Monitoringh3s嘉泰姆
70% Under-Voltage Protectionh3s嘉泰姆
125% Over-Voltage Protectionh3s嘉泰姆
TQFN3x3-16 Packageh3s嘉泰姆
Lead Free and Green Devices Available (RoHS Compliant)h3s嘉泰姆
三,应用范围 (Applications)h3s嘉泰姆


Notebookh3s嘉泰姆
Table PCh3s嘉泰姆
Hand-Held Portableh3s嘉泰姆
AIO PCh3s嘉泰姆

四.下载产品资料PDF文档 h3s嘉泰姆


需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持h3s嘉泰姆

 QQ截图20160419174301.jpgh3s嘉泰姆

五,产品封装图 (Package)h3s嘉泰姆


h3s嘉泰姆

六.电路原理图h3s嘉泰姆


blob.pngh3s嘉泰姆

七,功能概述h3s嘉泰姆


Input Capacitor Selection (Cont.)h3s嘉泰姆
higher than the maximum input voltage. The maximum RMS current rating requirement is approximately IOUT/2,h3s嘉泰姆
where IOUT is the load current. During power-up, the input capacitors have to handle great amount of surge current.h3s嘉泰姆
For low-duty notebook appliactions, ceramic capacitor is recommended. The capacitors must be connected be-h3s嘉泰姆
tween the drain of high-side MOSFET and the source of low-side MOSFET with very low-impeadance PCB layout.h3s嘉泰姆
MOSFET Selectionh3s嘉泰姆
The application for a notebook battery with a maximum voltage of 24V, at least a minimum 30V MOSFETs shouldh3s嘉泰姆
be used. The design has to trade off the gate charge with the RDS(ON) of the MOSFET:h3s嘉泰姆
For the low-side MOSFET, before it is turned on, the body diode has been conducting. The low-side MOSFET driverh3s嘉泰姆
will not charge the miller capacitor of this MOSFET.In the turning off process of the low-side MOSFET, theh3s嘉泰姆
load current will shift to the body diode first. The high dv/dt of the phase node voltage will charge the miller capaci-h3s嘉泰姆
tor through the low-side MOSFET driver sinking current path. This results in much less switching loss of the low-h3s嘉泰姆
side MOSFETs. The duty cycle is often very small in high battery voltage applications, and the low-side MOSFETh3s嘉泰姆
will conduct most of the switching cycle; therefore, when using smaller RDS(ON) of the low-side MOSFET, the con-h3s嘉泰姆
verter can reduce power loss. The gate charge for this MOSFET is usually the secondary consideration. Theh3s嘉泰姆
high-side MOSFET does not have this zero voltage switch-ing condition; in addition, it conducts for less time com-h3s嘉泰姆
pared to the low-side MOSFET, so the switching loss tends to be dominant. Priority should be given to theh3s嘉泰姆
MOSFETs with less gate charge, so that both the gate driver loss and switching loss will be minimized.h3s嘉泰姆
The selection of the N-channel power MOSFETs are determined by the R DS(ON), reversing transfer capaci-h3s嘉泰姆
tance (CRSS) and maximum output current requirement.The losses in the MOSFETs have two components:h3s嘉泰姆
conduction loss and transition loss. For the high-side and low-side MOSFETs, the losses are approximatelyh3s嘉泰姆
given by the following equations:h3s嘉泰姆
Phigh-side = IOUT (1+ TC)(RDS(ON))D + (0.5)( IOUT)(VIN)( tSW)FSWh3s嘉泰姆
Plow-side = IOUT (1+ TC)(RDS(ON))(1-D)h3s嘉泰姆
Where TC is the temperature dependency of RDS(ON)FSW is the switching frequencyh3s嘉泰姆
tSW is the switching interval D is the duty cycle Note that both MOSFETs have conduction losses whileh3s嘉泰姆
the high-side MOSFET includes an additional transition loss. The switching interval, tSW, is the function of the reverse transfer capacitance CRSS. The (1+TC) term is a factor in the temperature dependency of the RDS(ON) and can be extracted from the “RDS(ON) vs. Temperature” curve of the power MOSFETh3s嘉泰姆
Layout Considerationh3s嘉泰姆
In any high switching frequency converter, a correct layout is important to ensure proper operation of the regulator.h3s嘉泰姆
With power devices switching at higher frequency, the resulting current transient will cause voltage spike acrossh3s嘉泰姆
the interconnecting impedance and parasitic circuit elements. As an example, consider the turn-off transitionh3s嘉泰姆
of the PWM MOSFET. Before turn-off condition, the MOSFET is carrying the full load current. During turn-off,h3s嘉泰姆
current stops flowing in the MOSFET and is freewheeling by the low side MOSFET and parasitic diode. Any parasitich3s嘉泰姆
inductance of the circuit generates a large voltage spike during the switching interval. In general, using short andh3s嘉泰姆
wide printed circuit traces should minimize interconnect- ing impedances and the magnitude of voltage spike.h3s嘉泰姆
Besides, signal and power grounds are to be kept sepa- rating and finally combined using ground plane construc-h3s嘉泰姆
tion or single point grounding. The best tie-point between the signal ground and the power ground is at the nega-h3s嘉泰姆
tive side of the output capacitor on each channel, where there is less noise. Noisy traces beneath the IC are noth3s嘉泰姆
recommended. Below is a checklist for your layout:· Keep the switching nodes (UGATE, LGATE, BOOT,h3s嘉泰姆
and PHASE) away from sensitive small signal nodes since these nodes are fast moving signals.h3s嘉泰姆
Therefore, keep traces to these nodes as short ash3s嘉泰姆
side MOSFET. On the other hand, the PGND trace should be a separate trace and independently go toh3s嘉泰姆
the source of the low-side MOSFET. Besides, the cur-rent sense resistor should be close to OCSET pin toh3s嘉泰姆
avoid parasitic capacitor effect and noise coupling.h3s嘉泰姆
· Decoupling capacitors, the resistor-divider, and boot capacitor should be close to their pins. (For example,h3s嘉泰姆
place the decoupling ceramic capacitor close to the drain of the high-side MOSFET as close as possible.)h3s嘉泰姆
· The input bulk capacitors should be close to the drain of the high-side MOSFET, and the output bulk capaci-h3s嘉泰姆
tors should be close to the loads. The input capaci-tor’s ground should be close to the grounds of theh3s嘉泰姆
output capacitors and low-side MOSFET.h3s嘉泰姆
· Locate the resistor-divider close to the FB pin to mini-mize the high impedance trace. In addition, FB pinh3s嘉泰姆
traces can’t be close to the switching signal traces (UGATE, LGATE, BOOT, and PHASE).h3s嘉泰姆

Layout Consideration (Cont.)h3s嘉泰姆

possible and there should be no other weak signal traces in parallel with theses traces on any layer.h3s嘉泰姆
· The signals going through theses traces have both high dv/dt and high di/dt with high peak charging andh3s嘉泰姆
discharging current. The traces from the gate drivers to the MOSFETs (UGATE and LGATE) should be shorth3s嘉泰姆
and wide.h3s嘉泰姆
· Place the source of the high-side MOSFET and the drain of the low-side MOSFET as close as possible.h3s嘉泰姆
Minimizing the impedance with wide layout plane be-tween the two pads reduces the voltage bounce ofh3s嘉泰姆
the drain of the MOSFETs (VIN and PHASE nodes) can get better heat sinking.h3s嘉泰姆

· The PGND is the current sensing circuit reference ground and also the power ground of the LGATE low-h3s嘉泰姆

八,相关产品             更多同类产品...... h3s嘉泰姆


Switching Regulator >   Buck Controllerh3s嘉泰姆

Part_No h3s嘉泰姆

Package h3s嘉泰姆

Archih3s嘉泰姆

tectuh3s嘉泰姆

Phaseh3s嘉泰姆

No.ofh3s嘉泰姆

PWMh3s嘉泰姆

Outputh3s嘉泰姆

Output h3s嘉泰姆

Currenth3s嘉泰姆

(A) h3s嘉泰姆

Inputh3s嘉泰姆

Voltage (V) h3s嘉泰姆

Referenceh3s嘉泰姆

Voltageh3s嘉泰姆

(V) h3s嘉泰姆

Bias h3s嘉泰姆

Voltageh3s嘉泰姆

(V) h3s嘉泰姆

Quiescenth3s嘉泰姆

Currenth3s嘉泰姆

(uA) h3s嘉泰姆

minh3s嘉泰姆

maxh3s嘉泰姆

CXSD6273h3s嘉泰姆

SOP-14h3s嘉泰姆

QSOP-16h3s嘉泰姆

QFN4x4-16h3s嘉泰姆

VM    h3s嘉泰姆

1   h3s嘉泰姆

1     h3s嘉泰姆

30h3s嘉泰姆

2.9    h3s嘉泰姆

13.2h3s嘉泰姆

0.9h3s嘉泰姆

12     h3s嘉泰姆

8000h3s嘉泰姆

CXSD6274h3s嘉泰姆

SOP-8h3s嘉泰姆

VM   h3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

20h3s嘉泰姆

2.9  h3s嘉泰姆

13.2 h3s嘉泰姆

0.8h3s嘉泰姆

12h3s嘉泰姆

5000h3s嘉泰姆

CXSD6274Ch3s嘉泰姆

SOP-8h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

20h3s嘉泰姆

2.9h3s嘉泰姆

13.2h3s嘉泰姆

0.8h3s嘉泰姆

12h3s嘉泰姆

5000h3s嘉泰姆

CXSD6275h3s嘉泰姆

QFN4x4-24h3s嘉泰姆

VMh3s嘉泰姆

2h3s嘉泰姆

1h3s嘉泰姆

60h3s嘉泰姆

3.1h3s嘉泰姆

13.2h3s嘉泰姆

0.6h3s嘉泰姆

12h3s嘉泰姆

5000h3s嘉泰姆

CXSD6276h3s嘉泰姆

SOP-8h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

20h3s嘉泰姆

2.2h3s嘉泰姆

13.2h3s嘉泰姆

0.8h3s嘉泰姆

5~12h3s嘉泰姆

2100h3s嘉泰姆

CXSD6276Ah3s嘉泰姆

SOP-8h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

20h3s嘉泰姆

2.2h3s嘉泰姆

13.2h3s嘉泰姆

0.8h3s嘉泰姆

5~12h3s嘉泰姆

2100h3s嘉泰姆

CXSD6277/A/Bh3s嘉泰姆

SOP8|TSSOP8h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

5h3s嘉泰姆

5h3s嘉泰姆

13.2h3s嘉泰姆

1.25|0.8h3s嘉泰姆

5~12h3s嘉泰姆

3000h3s嘉泰姆

CXSD6278h3s嘉泰姆

SOP-8h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

10h3s嘉泰姆

3.3h3s嘉泰姆

5.5h3s嘉泰姆

0.8h3s嘉泰姆

5h3s嘉泰姆

2100h3s嘉泰姆

CXSD6279Bh3s嘉泰姆

SOP-14h3s嘉泰姆

VM   h3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

10h3s嘉泰姆

5h3s嘉泰姆

13.2h3s嘉泰姆

0.8h3s嘉泰姆

12h3s嘉泰姆

2000h3s嘉泰姆

CXSD6280h3s嘉泰姆

TSSOP-24h3s嘉泰姆

|QFN5x5-32h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

2h3s嘉泰姆

20h3s嘉泰姆

5h3s嘉泰姆

13.2h3s嘉泰姆

0.6h3s嘉泰姆

5~12h3s嘉泰姆

4000h3s嘉泰姆

CXSD6281Nh3s嘉泰姆

SOP14h3s嘉泰姆

QSOP16h3s嘉泰姆

QFN-16h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

30h3s嘉泰姆

2.9h3s嘉泰姆

13.2h3s嘉泰姆

0.9h3s嘉泰姆

12h3s嘉泰姆

4000h3s嘉泰姆

CXSD6282h3s嘉泰姆

SOP-14h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

30h3s嘉泰姆

2.2h3s嘉泰姆

13.2h3s嘉泰姆

0.6h3s嘉泰姆

12h3s嘉泰姆

5000h3s嘉泰姆

CXSD6282Ah3s嘉泰姆

SOP-14h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

30h3s嘉泰姆

2.2h3s嘉泰姆

13.2h3s嘉泰姆

0.6h3s嘉泰姆

12h3s嘉泰姆

5000h3s嘉泰姆

CXSD6283h3s嘉泰姆

SOP-14h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

25h3s嘉泰姆

2.2h3s嘉泰姆

13.2h3s嘉泰姆

0.8h3s嘉泰姆

12h3s嘉泰姆

5000h3s嘉泰姆

CXSD6284/Ah3s嘉泰姆

LQFP7x7 48h3s嘉泰姆

TQFN7x7-48h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

6h3s嘉泰姆

0.015h3s嘉泰姆

1.4h3s嘉泰姆

6.5h3s嘉泰姆

-h3s嘉泰姆

5h3s嘉泰姆

1800h3s嘉泰姆

CXSD6285h3s嘉泰姆

TSSOP-24Ph3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

2h3s嘉泰姆

20h3s嘉泰姆

2.97h3s嘉泰姆

5.5h3s嘉泰姆

0.8h3s嘉泰姆

5~12h3s嘉泰姆

5000h3s嘉泰姆

CXSD6286h3s嘉泰姆

SOP-14h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

10h3s嘉泰姆

5h3s嘉泰姆

13.2h3s嘉泰姆

0.8h3s嘉泰姆

12h3s嘉泰姆

3000h3s嘉泰姆

CXSD6287h3s嘉泰姆

SOP-8-P|DIP-8h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

30h3s嘉泰姆

2.9h3s嘉泰姆

13.2h3s嘉泰姆

1.2h3s嘉泰姆

12h3s嘉泰姆

3000h3s嘉泰姆

CXSD6288h3s嘉泰姆

SSOP28h3s嘉泰姆

QFN4x4-24h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

2h3s嘉泰姆

20h3s嘉泰姆

5h3s嘉泰姆

24h3s嘉泰姆

0.9h3s嘉泰姆

5h3s嘉泰姆

1200h3s嘉泰姆

CXSD6289h3s嘉泰姆

SOP-20h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

2h3s嘉泰姆

20h3s嘉泰姆

2.2h3s嘉泰姆

13.2h3s嘉泰姆

0.6h3s嘉泰姆

5~12h3s嘉泰姆

4000h3s嘉泰姆

CXSD6290h3s嘉泰姆

SOP8|DFN3x3-10h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

2h3s嘉泰姆

-h3s嘉泰姆

-h3s嘉泰姆

-h3s嘉泰姆

-h3s嘉泰姆

5~12h3s嘉泰姆

550h3s嘉泰姆

CXSD6291HCh3s嘉泰姆

DIP8|SOP-8h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

1.2h3s嘉泰姆

9h3s嘉泰姆

24h3s嘉泰姆

5h3s嘉泰姆

9 ~ 24h3s嘉泰姆

CXSD6292h3s嘉泰姆

SSOP16h3s嘉泰姆

QFN4x4-16h3s嘉泰姆

TQFN3x3-16h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

25h3s嘉泰姆

3h3s嘉泰姆

25h3s嘉泰姆

0.6h3s嘉泰姆

5h3s嘉泰姆

1700h3s嘉泰姆

CXSD6293h3s嘉泰姆

TDFN3x3-10h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

25h3s嘉泰姆

3h3s嘉泰姆

25h3s嘉泰姆

0.5h3s嘉泰姆

5h3s嘉泰姆

350h3s嘉泰姆

CXSD6294h3s嘉泰姆

QFN4x4-24h3s嘉泰姆

CMh3s嘉泰姆

2h3s嘉泰姆

1h3s嘉泰姆

40h3s嘉泰姆

4.5h3s嘉泰姆

13.2h3s嘉泰姆

0.6h3s嘉泰姆

5~12h3s嘉泰姆

4000h3s嘉泰姆

CXSD6295h3s嘉泰姆

SOP8Ph3s嘉泰姆

TDFN3x3-10h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

20h3s嘉泰姆

3h3s嘉泰姆

13.2h3s嘉泰姆

0.8h3s嘉泰姆

5~12h3s嘉泰姆

2500h3s嘉泰姆

CXSD6296A|B|C|Dh3s嘉泰姆

SOP8Ph3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

25h3s嘉泰姆

3h3s嘉泰姆

13.2h3s嘉泰姆

0.6|0.8h3s嘉泰姆

5~12h3s嘉泰姆

1200h3s嘉泰姆

CXSD6297h3s嘉泰姆

TDFN3x3-10h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

25h3s嘉泰姆

4h3s嘉泰姆

13.2h3s嘉泰姆

0.8h3s嘉泰姆

5~12h3s嘉泰姆

2000h3s嘉泰姆

CXSD6298h3s嘉泰姆

TDFN3x3-10h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

25h3s嘉泰姆

4.5h3s嘉泰姆

25h3s嘉泰姆

0.6h3s嘉泰姆

5~12h3s嘉泰姆

80h3s嘉泰姆

CXSD6299|Ah3s嘉泰姆

SOP-8Ph3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

25h3s嘉泰姆

4.5h3s嘉泰姆

13.2h3s嘉泰姆

0.8h3s嘉泰姆

5~12h3s嘉泰姆

16000h3s嘉泰姆

CXSD62100h3s嘉泰姆

TQFN3x3-10h3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

25h3s嘉泰姆

4.5h3s嘉泰姆

13.2h3s嘉泰姆

0.6h3s嘉泰姆

5~12h3s嘉泰姆

2500h3s嘉泰姆

CXSD62101|Lh3s嘉泰姆

TDFN3x3-10h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

30h3s嘉泰姆

3h3s嘉泰姆

25h3s嘉泰姆

0.8h3s嘉泰姆

5~12h3s嘉泰姆

2000h3s嘉泰姆

CXSD62102h3s嘉泰姆

TQFN3x3-16h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

30h3s嘉泰姆

1.8h3s嘉泰姆

28h3s嘉泰姆

0.6h3s嘉泰姆

5h3s嘉泰姆

600h3s嘉泰姆

CXSD62102Ah3s嘉泰姆

TQFN 3x3 16h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

30h3s嘉泰姆

1.8h3s嘉泰姆

28h3s嘉泰姆

0.6h3s嘉泰姆

5h3s嘉泰姆

600h3s嘉泰姆

CXSD62103h3s嘉泰姆

QFN4x4-24h3s嘉泰姆

VMh3s嘉泰姆

2h3s嘉泰姆

1h3s嘉泰姆

50h3s嘉泰姆

4.5h3s嘉泰姆

13.2h3s嘉泰姆

0.6h3s嘉泰姆

5~12h3s嘉泰姆

5000h3s嘉泰姆

CXSD62104h3s嘉泰姆

TQFN4x4-24h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

2h3s嘉泰姆

15h3s嘉泰姆

6h3s嘉泰姆

25h3s嘉泰姆

2h3s嘉泰姆

Nh3s嘉泰姆

550h3s嘉泰姆

CXSD62105h3s嘉泰姆

TQFN4x4-24h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

2h3s嘉泰姆

15h3s嘉泰姆

6h3s嘉泰姆

25h3s嘉泰姆

2h3s嘉泰姆

Nh3s嘉泰姆

550h3s嘉泰姆

CXSD62106|Ah3s嘉泰姆

TQFN4x4-4h3s嘉泰姆

TQFN3x3-20h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

2h3s嘉泰姆

20h3s嘉泰姆

3h3s嘉泰姆

28h3s嘉泰姆

0.75h3s嘉泰姆

5h3s嘉泰姆

800h3s嘉泰姆

CXSD62107h3s嘉泰姆

TQFN3x3-16h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

20h3s嘉泰姆

1.8h3s嘉泰姆

28h3s嘉泰姆

0.75h3s嘉泰姆

5h3s嘉泰姆

400h3s嘉泰姆

CXSD62108h3s嘉泰姆

QFN3.5x3.5-14h3s嘉泰姆

TQFN3x3-16h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

20h3s嘉泰姆

1.8h3s嘉泰姆

28h3s嘉泰姆

0.75h3s嘉泰姆

5h3s嘉泰姆

400h3s嘉泰姆

CXSD62109h3s嘉泰姆

TQFN3x3-16h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

2h3s嘉泰姆

20h3s嘉泰姆

1.8h3s嘉泰姆

28h3s嘉泰姆

0.75h3s嘉泰姆

5h3s嘉泰姆

400h3s嘉泰姆

CXSD62110h3s嘉泰姆

QFN3x3-20h3s嘉泰姆

TQFN3x3-16h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

2h3s嘉泰姆

20h3s嘉泰姆

3h3s嘉泰姆

28h3s嘉泰姆

1.8|1.5|0.5h3s嘉泰姆

5h3s嘉泰姆

740h3s嘉泰姆

CXSD62111h3s嘉泰姆

TQFN4x4-24h3s嘉泰姆

|QFN3x3-20h3s嘉泰姆

CMh3s嘉泰姆

1h3s嘉泰姆

2h3s嘉泰姆

15h3s嘉泰姆

5h3s嘉泰姆

28h3s嘉泰姆

0.5h3s嘉泰姆

Nh3s嘉泰姆

3000h3s嘉泰姆

CXSD62112h3s嘉泰姆

TDFN3x3-10h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

20h3s嘉泰姆

1.8h3s嘉泰姆

28h3s嘉泰姆

0.5h3s嘉泰姆

5h3s嘉泰姆

250h3s嘉泰姆

CXSD62113|Ch3s嘉泰姆

TQFN3x3-20h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

2h3s嘉泰姆

15h3s嘉泰姆

6h3s嘉泰姆

25h3s嘉泰姆

2h3s嘉泰姆

Nh3s嘉泰姆

550h3s嘉泰姆

CXSD62113Eh3s嘉泰姆

TQFN 3x3 20h3s嘉泰姆

COTh3s嘉泰姆

2h3s嘉泰姆

2h3s嘉泰姆

11h3s嘉泰姆

6h3s嘉泰姆

25h3s嘉泰姆

2h3s嘉泰姆

Nh3s嘉泰姆

550h3s嘉泰姆

CXSD62114h3s嘉泰姆

TQFN3x3-20h3s嘉泰姆

COTh3s嘉泰姆

2h3s嘉泰姆

2h3s嘉泰姆

11h3s嘉泰姆

5.5h3s嘉泰姆

25h3s嘉泰姆

2h3s嘉泰姆

Nh3s嘉泰姆

280h3s嘉泰姆

CXSD62115h3s嘉泰姆

QFN4x4-24h3s嘉泰姆

VMh3s嘉泰姆

2h3s嘉泰姆

1h3s嘉泰姆

60h3s嘉泰姆

3.1h3s嘉泰姆

13.2h3s嘉泰姆

0.85h3s嘉泰姆

12h3s嘉泰姆

5000h3s嘉泰姆

CXSD62116A|B|Ch3s嘉泰姆

SOP-8Ph3s嘉泰姆

VMh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

20h3s嘉泰姆

2.9h3s嘉泰姆

13.2h3s嘉泰姆

0.8h3s嘉泰姆

12h3s嘉泰姆

16000h3s嘉泰姆

CXSD62117h3s嘉泰姆

SOP-20h3s嘉泰姆

VMh3s嘉泰姆

2h3s嘉泰姆

2h3s嘉泰姆

30h3s嘉泰姆

10h3s嘉泰姆

13.2h3s嘉泰姆

1h3s嘉泰姆

12h3s嘉泰姆

5000h3s嘉泰姆

CXSD62118h3s嘉泰姆

TDFN3x3-10h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

1h3s嘉泰姆

25h3s嘉泰姆

1.8h3s嘉泰姆

28h3s嘉泰姆

0.7h3s嘉泰姆

5h3s嘉泰姆

250h3s嘉泰姆

CXSD62119h3s嘉泰姆

TQFN3x3-20h3s嘉泰姆

COTh3s嘉泰姆

2h3s嘉泰姆

1h3s嘉泰姆

40h3s嘉泰姆

1.8h3s嘉泰姆

25h3s嘉泰姆

REFIN Settingh3s嘉泰姆

5h3s嘉泰姆

700h3s嘉泰姆

CXSD62120h3s嘉泰姆

QFN 3x3 20h3s嘉泰姆

TQFN 3x3 16h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

2h3s嘉泰姆

20h3s嘉泰姆

3h3s嘉泰姆

28h3s嘉泰姆

1.8|1.5 1.35|1.2 0.5h3s嘉泰姆

5h3s嘉泰姆

800h3s嘉泰姆

CXSD62121Ah3s嘉泰姆

TQFN3x3 20h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

2h3s嘉泰姆

15h3s嘉泰姆

3h3s嘉泰姆

28h3s嘉泰姆

0.75h3s嘉泰姆

5h3s嘉泰姆

220h3s嘉泰姆

CXSD62121Bh3s嘉泰姆

TQFN3x3 20h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

2h3s嘉泰姆

15h3s嘉泰姆

3h3s嘉泰姆

28h3s嘉泰姆

0.75h3s嘉泰姆

5h3s嘉泰姆

220h3s嘉泰姆

CXSD62121h3s嘉泰姆

TQFN3x3-20h3s嘉泰姆

COTh3s嘉泰姆

1h3s嘉泰姆

2h3s嘉泰姆

20h3s嘉泰姆

3h3s嘉泰姆

28h3s嘉泰姆

0.75h3s嘉泰姆

5h3s嘉泰姆

180h3s嘉泰姆

发表评论
    共有条评论
    用户名: 密码:
    验证码: 匿名发表

热门信息
  • 最新信息
    推荐信息
    相关文章
    无相关信息
    推荐资讯
    智能电表驱动技术全景解析:从计量芯片到通信模块的完整指南
    智能电表驱动技术全景
    电子秤显示模块核心技术解析:从LCD驱动到智能接口的全方案指南
    电子秤显示模块核心技
    显示驱动电路深度解析:从基础原理到先进设计的完整指南  SEO关键词:
    显示驱动电路深度解析
    智能家电控制系统全面解析:从技术原理到未来趋势的深度指南
    智能家电控制系统全面
    串行通信接口终极指南:从基础原理到高速协议的全景解析
    串行通信接口终极指南
    家电显示控制系统全景解读:从UI设计到智能交互的技术演进
    家电显示控制系统全景
    辉度调节技术全面解析:从PWM调光到智能亮度控制的全景指南
    辉度调节技术全面解析
    串行接口终极指南:从UART到PCIe,详解串行通信原理与应用
    串行接口终极指南:从UA
    显示控制系统深度解析:从驱动原理到多屏交互的全景指南
    显示控制系统深度解析
    段码LED显示技术详解:原理、应用与选型指南
    段码LED显示技术详解:
    键盘扫描揭秘:从原理到应用,全面解析键盘如何识键如神
    键盘扫描揭秘:从原理到
    恒流驱动:终极指南 - 原理、优势与应用场景
    恒流驱动:终极指南 -