产品信息查询
产品 新闻
首页 > 产品中心 > 电源管理 > DC降压型芯片 > Buck降压型芯片 >CXSD62102A单相定时同步的PWM控制器驱动N通道mosfet功率因数调制(PFM)或脉宽调制(PWM)模式下都能瞬态响应和准确的直流电压输出
CXSD62102A单相定时同步的PWM控制器驱动N通道mosfet功率因数调制(PFM)或脉宽调制(PWM)模式下都能瞬态响应和准确的直流电压输出
0

CXSD62102A降压在not中产生低压芯片组或RAM电源单相,恒定时间,同步PWM控制器,驱动N通道mosfet。CXSD62102A降压以在笔记本电脑中产生低压芯片组或RAM电源。

CXSD62102A单相定时同步的PWM控制器驱动N通道mosfet功率因数调制(PFM)或脉宽调制(PWM)模式下都能瞬态响应和准确的直流电压输出
产品手册
样品申请

样品申请

产品简介

目录6yv嘉泰姆

1.产品概述                       2.产品特点6yv嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 6yv嘉泰姆
5.产品封装图                     6.电路原理图                   6yv嘉泰姆
7.功能概述                        8.相关产品6yv嘉泰姆

一,产品概述(General Description)    6yv嘉泰姆


  The CXSD62102A is a single-phase, constant on-time,synchronous PWM controller, which drives N-channel MOSFETs. The CXSD62102A steps down high voltage to generate low-voltage chipset or RAM supplies in notebook computers.6yv嘉泰姆
  The CXSD62102A provides excellent transient response and accurate DC voltage output in either PFM or PWM Mode.In Pulse Frequency Mode (PFM), the CXSD62102A provides very high efficiency over light to heavy loads with loading-6yv嘉泰姆
modulated switching frequencies. In PWM Mode, the converter works nearly at constant frequency for low-noise requirements.6yv嘉泰姆
  The CXSD62102A is equipped with accurate positive current limit, output under-voltage, and output over-voltage protections, perfect for NB applications. The Power-On-Reset function monitors the voltage on VCC to prevent wrong operation during power-on. The CXSD62102A has a 1ms digital soft start and built-in an integrated output discharge device for soft stop. An internal integrated soft-6yv嘉泰姆
start ramps up the output voltage with programmable slew rate to reduce the start-up current. A soft-stop function actively discharges the output capacitors.6yv嘉泰姆
  The CXSD62102A is available in 16pin TQFN3x3-16 package respectively.6yv嘉泰姆
二.产品特点(Features)6yv嘉泰姆


Adjustable Output Voltage from +0.6V to +3.3V6yv嘉泰姆
- 0.6V Reference Voltage6yv嘉泰姆
- ±0.6% Accuracy Over-Temperature6yv嘉泰姆
Operates from An Input Battery Voltage Range of6yv嘉泰姆
+1.8V to +28V6yv嘉泰姆
REFIN Function for Over-clocking Purpose from6yv嘉泰姆
0.5V~2.5V range6yv嘉泰姆
Power-On-Reset Monitoring on VCC pin6yv嘉泰姆
Excellent line and load transient responses6yv嘉泰姆
PFM mode for increased light load efficiency6yv嘉泰姆
Programmable PWM Frequency from 100kHz to 500kHz6yv嘉泰姆
Built in 30A Output current driving capability6yv嘉泰姆
Integrate MOSFET Drivers6yv嘉泰姆
Integrated Bootstrap Forward P-CH MOSFET6yv嘉泰姆
Power Good Monitoring6yv嘉泰姆
70% Under-Voltage Protection6yv嘉泰姆
125% Over-Voltage Protection6yv嘉泰姆
TQFN3x3-16 Package6yv嘉泰姆
Lead Free and Green Devices Available (RoHS Compliant)6yv嘉泰姆
三,应用范围 (Applications)6yv嘉泰姆


Notebook6yv嘉泰姆
Table PC6yv嘉泰姆
Hand-Held Portable6yv嘉泰姆
AIO PC6yv嘉泰姆

四.下载产品资料PDF文档 6yv嘉泰姆


需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持6yv嘉泰姆

 QQ截图20160419174301.jpg6yv嘉泰姆

五,产品封装图 (Package)6yv嘉泰姆


6yv嘉泰姆

六.电路原理图6yv嘉泰姆


blob.png6yv嘉泰姆

七,功能概述6yv嘉泰姆


Input Capacitor Selection (Cont.)6yv嘉泰姆
higher than the maximum input voltage. The maximum RMS current rating requirement is approximately IOUT/2,6yv嘉泰姆
where IOUT is the load current. During power-up, the input capacitors have to handle great amount of surge current.6yv嘉泰姆
For low-duty notebook appliactions, ceramic capacitor is recommended. The capacitors must be connected be-6yv嘉泰姆
tween the drain of high-side MOSFET and the source of low-side MOSFET with very low-impeadance PCB layout.6yv嘉泰姆
MOSFET Selection6yv嘉泰姆
The application for a notebook battery with a maximum voltage of 24V, at least a minimum 30V MOSFETs should6yv嘉泰姆
be used. The design has to trade off the gate charge with the RDS(ON) of the MOSFET:6yv嘉泰姆
For the low-side MOSFET, before it is turned on, the body diode has been conducting. The low-side MOSFET driver6yv嘉泰姆
will not charge the miller capacitor of this MOSFET.In the turning off process of the low-side MOSFET, the6yv嘉泰姆
load current will shift to the body diode first. The high dv/dt of the phase node voltage will charge the miller capaci-6yv嘉泰姆
tor through the low-side MOSFET driver sinking current path. This results in much less switching loss of the low-6yv嘉泰姆
side MOSFETs. The duty cycle is often very small in high battery voltage applications, and the low-side MOSFET6yv嘉泰姆
will conduct most of the switching cycle; therefore, when using smaller RDS(ON) of the low-side MOSFET, the con-6yv嘉泰姆
verter can reduce power loss. The gate charge for this MOSFET is usually the secondary consideration. The6yv嘉泰姆
high-side MOSFET does not have this zero voltage switch-ing condition; in addition, it conducts for less time com-6yv嘉泰姆
pared to the low-side MOSFET, so the switching loss tends to be dominant. Priority should be given to the6yv嘉泰姆
MOSFETs with less gate charge, so that both the gate driver loss and switching loss will be minimized.6yv嘉泰姆
The selection of the N-channel power MOSFETs are determined by the R DS(ON), reversing transfer capaci-6yv嘉泰姆
tance (CRSS) and maximum output current requirement.The losses in the MOSFETs have two components:6yv嘉泰姆
conduction loss and transition loss. For the high-side and low-side MOSFETs, the losses are approximately6yv嘉泰姆
given by the following equations:6yv嘉泰姆
Phigh-side = IOUT (1+ TC)(RDS(ON))D + (0.5)( IOUT)(VIN)( tSW)FSW6yv嘉泰姆
Plow-side = IOUT (1+ TC)(RDS(ON))(1-D)6yv嘉泰姆
Where TC is the temperature dependency of RDS(ON)FSW is the switching frequency6yv嘉泰姆
tSW is the switching interval D is the duty cycle Note that both MOSFETs have conduction losses while6yv嘉泰姆
the high-side MOSFET includes an additional transition loss. The switching interval, tSW, is the function of the reverse transfer capacitance CRSS. The (1+TC) term is a factor in the temperature dependency of the RDS(ON) and can be extracted from the “RDS(ON) vs. Temperature” curve of the power MOSFET6yv嘉泰姆
Layout Consideration6yv嘉泰姆
In any high switching frequency converter, a correct layout is important to ensure proper operation of the regulator.6yv嘉泰姆
With power devices switching at higher frequency, the resulting current transient will cause voltage spike across6yv嘉泰姆
the interconnecting impedance and parasitic circuit elements. As an example, consider the turn-off transition6yv嘉泰姆
of the PWM MOSFET. Before turn-off condition, the MOSFET is carrying the full load current. During turn-off,6yv嘉泰姆
current stops flowing in the MOSFET and is freewheeling by the low side MOSFET and parasitic diode. Any parasitic6yv嘉泰姆
inductance of the circuit generates a large voltage spike during the switching interval. In general, using short and6yv嘉泰姆
wide printed circuit traces should minimize interconnect- ing impedances and the magnitude of voltage spike.6yv嘉泰姆
Besides, signal and power grounds are to be kept sepa- rating and finally combined using ground plane construc-6yv嘉泰姆
tion or single point grounding. The best tie-point between the signal ground and the power ground is at the nega-6yv嘉泰姆
tive side of the output capacitor on each channel, where there is less noise. Noisy traces beneath the IC are not6yv嘉泰姆
recommended. Below is a checklist for your layout:· Keep the switching nodes (UGATE, LGATE, BOOT,6yv嘉泰姆
and PHASE) away from sensitive small signal nodes since these nodes are fast moving signals.6yv嘉泰姆
Therefore, keep traces to these nodes as short as6yv嘉泰姆
side MOSFET. On the other hand, the PGND trace should be a separate trace and independently go to6yv嘉泰姆
the source of the low-side MOSFET. Besides, the cur-rent sense resistor should be close to OCSET pin to6yv嘉泰姆
avoid parasitic capacitor effect and noise coupling.6yv嘉泰姆
· Decoupling capacitors, the resistor-divider, and boot capacitor should be close to their pins. (For example,6yv嘉泰姆
place the decoupling ceramic capacitor close to the drain of the high-side MOSFET as close as possible.)6yv嘉泰姆
· The input bulk capacitors should be close to the drain of the high-side MOSFET, and the output bulk capaci-6yv嘉泰姆
tors should be close to the loads. The input capaci-tor’s ground should be close to the grounds of the6yv嘉泰姆
output capacitors and low-side MOSFET.6yv嘉泰姆
· Locate the resistor-divider close to the FB pin to mini-mize the high impedance trace. In addition, FB pin6yv嘉泰姆
traces can’t be close to the switching signal traces (UGATE, LGATE, BOOT, and PHASE).6yv嘉泰姆

Layout Consideration (Cont.)6yv嘉泰姆

possible and there should be no other weak signal traces in parallel with theses traces on any layer.6yv嘉泰姆
· The signals going through theses traces have both high dv/dt and high di/dt with high peak charging and6yv嘉泰姆
discharging current. The traces from the gate drivers to the MOSFETs (UGATE and LGATE) should be short6yv嘉泰姆
and wide.6yv嘉泰姆
· Place the source of the high-side MOSFET and the drain of the low-side MOSFET as close as possible.6yv嘉泰姆
Minimizing the impedance with wide layout plane be-tween the two pads reduces the voltage bounce of6yv嘉泰姆
the drain of the MOSFETs (VIN and PHASE nodes) can get better heat sinking.6yv嘉泰姆

· The PGND is the current sensing circuit reference ground and also the power ground of the LGATE low-6yv嘉泰姆

  • CXSD62102ACXSD62102A6yv嘉泰姆

八,相关产品             更多同类产品...... 6yv嘉泰姆


Switching Regulator >   Buck Controller6yv嘉泰姆

Part_No 6yv嘉泰姆

Package 6yv嘉泰姆

Archi6yv嘉泰姆

tectu6yv嘉泰姆

Phase6yv嘉泰姆

No.of6yv嘉泰姆

PWM6yv嘉泰姆

Output6yv嘉泰姆

Output 6yv嘉泰姆

Current6yv嘉泰姆

(A) 6yv嘉泰姆

Input6yv嘉泰姆

Voltage (V) 6yv嘉泰姆

Reference6yv嘉泰姆

Voltage6yv嘉泰姆

(V) 6yv嘉泰姆

Bias 6yv嘉泰姆

Voltage6yv嘉泰姆

(V) 6yv嘉泰姆

Quiescent6yv嘉泰姆

Current6yv嘉泰姆

(uA) 6yv嘉泰姆

min6yv嘉泰姆

max6yv嘉泰姆

CXSD62736yv嘉泰姆

SOP-146yv嘉泰姆

QSOP-166yv嘉泰姆

QFN4x4-166yv嘉泰姆

VM    6yv嘉泰姆

1   6yv嘉泰姆

1     6yv嘉泰姆

306yv嘉泰姆

2.9    6yv嘉泰姆

13.26yv嘉泰姆

0.96yv嘉泰姆

12     6yv嘉泰姆

80006yv嘉泰姆

CXSD62746yv嘉泰姆

SOP-86yv嘉泰姆

VM   6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

206yv嘉泰姆

2.9  6yv嘉泰姆

13.2 6yv嘉泰姆

0.86yv嘉泰姆

126yv嘉泰姆

50006yv嘉泰姆

CXSD6274C6yv嘉泰姆

SOP-86yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

206yv嘉泰姆

2.96yv嘉泰姆

13.26yv嘉泰姆

0.86yv嘉泰姆

126yv嘉泰姆

50006yv嘉泰姆

CXSD62756yv嘉泰姆

QFN4x4-246yv嘉泰姆

VM6yv嘉泰姆

26yv嘉泰姆

16yv嘉泰姆

606yv嘉泰姆

3.16yv嘉泰姆

13.26yv嘉泰姆

0.66yv嘉泰姆

126yv嘉泰姆

50006yv嘉泰姆

CXSD62766yv嘉泰姆

SOP-86yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

206yv嘉泰姆

2.26yv嘉泰姆

13.26yv嘉泰姆

0.86yv嘉泰姆

5~126yv嘉泰姆

21006yv嘉泰姆

CXSD6276A6yv嘉泰姆

SOP-86yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

206yv嘉泰姆

2.26yv嘉泰姆

13.26yv嘉泰姆

0.86yv嘉泰姆

5~126yv嘉泰姆

21006yv嘉泰姆

CXSD6277/A/B6yv嘉泰姆

SOP8|TSSOP86yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

56yv嘉泰姆

56yv嘉泰姆

13.26yv嘉泰姆

1.25|0.86yv嘉泰姆

5~126yv嘉泰姆

30006yv嘉泰姆

CXSD62786yv嘉泰姆

SOP-86yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

106yv嘉泰姆

3.36yv嘉泰姆

5.56yv嘉泰姆

0.86yv嘉泰姆

56yv嘉泰姆

21006yv嘉泰姆

CXSD6279B6yv嘉泰姆

SOP-146yv嘉泰姆

VM   6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

106yv嘉泰姆

56yv嘉泰姆

13.26yv嘉泰姆

0.86yv嘉泰姆

126yv嘉泰姆

20006yv嘉泰姆

CXSD62806yv嘉泰姆

TSSOP-246yv嘉泰姆

|QFN5x5-326yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

26yv嘉泰姆

206yv嘉泰姆

56yv嘉泰姆

13.26yv嘉泰姆

0.66yv嘉泰姆

5~126yv嘉泰姆

40006yv嘉泰姆

CXSD6281N6yv嘉泰姆

SOP146yv嘉泰姆

QSOP166yv嘉泰姆

QFN-166yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

306yv嘉泰姆

2.96yv嘉泰姆

13.26yv嘉泰姆

0.96yv嘉泰姆

126yv嘉泰姆

40006yv嘉泰姆

CXSD62826yv嘉泰姆

SOP-146yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

306yv嘉泰姆

2.26yv嘉泰姆

13.26yv嘉泰姆

0.66yv嘉泰姆

126yv嘉泰姆

50006yv嘉泰姆

CXSD6282A6yv嘉泰姆

SOP-146yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

306yv嘉泰姆

2.26yv嘉泰姆

13.26yv嘉泰姆

0.66yv嘉泰姆

126yv嘉泰姆

50006yv嘉泰姆

CXSD62836yv嘉泰姆

SOP-146yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

256yv嘉泰姆

2.26yv嘉泰姆

13.26yv嘉泰姆

0.86yv嘉泰姆

126yv嘉泰姆

50006yv嘉泰姆

CXSD6284/A6yv嘉泰姆

LQFP7x7 486yv嘉泰姆

TQFN7x7-486yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

66yv嘉泰姆

0.0156yv嘉泰姆

1.46yv嘉泰姆

6.56yv嘉泰姆

-6yv嘉泰姆

56yv嘉泰姆

18006yv嘉泰姆

CXSD62856yv嘉泰姆

TSSOP-24P6yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

26yv嘉泰姆

206yv嘉泰姆

2.976yv嘉泰姆

5.56yv嘉泰姆

0.86yv嘉泰姆

5~126yv嘉泰姆

50006yv嘉泰姆

CXSD62866yv嘉泰姆

SOP-146yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

106yv嘉泰姆

56yv嘉泰姆

13.26yv嘉泰姆

0.86yv嘉泰姆

126yv嘉泰姆

30006yv嘉泰姆

CXSD62876yv嘉泰姆

SOP-8-P|DIP-86yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

306yv嘉泰姆

2.96yv嘉泰姆

13.26yv嘉泰姆

1.26yv嘉泰姆

126yv嘉泰姆

30006yv嘉泰姆

CXSD62886yv嘉泰姆

SSOP286yv嘉泰姆

QFN4x4-246yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

26yv嘉泰姆

206yv嘉泰姆

56yv嘉泰姆

246yv嘉泰姆

0.96yv嘉泰姆

56yv嘉泰姆

12006yv嘉泰姆

CXSD62896yv嘉泰姆

SOP-206yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

26yv嘉泰姆

206yv嘉泰姆

2.26yv嘉泰姆

13.26yv嘉泰姆

0.66yv嘉泰姆

5~126yv嘉泰姆

40006yv嘉泰姆

CXSD62906yv嘉泰姆

SOP8|DFN3x3-106yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

26yv嘉泰姆

-6yv嘉泰姆

-6yv嘉泰姆

-6yv嘉泰姆

-6yv嘉泰姆

5~126yv嘉泰姆

5506yv嘉泰姆

CXSD6291HC6yv嘉泰姆

DIP8|SOP-86yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

1.26yv嘉泰姆

96yv嘉泰姆

246yv嘉泰姆

56yv嘉泰姆

9 ~ 246yv嘉泰姆

CXSD62926yv嘉泰姆

SSOP166yv嘉泰姆

QFN4x4-166yv嘉泰姆

TQFN3x3-166yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

256yv嘉泰姆

36yv嘉泰姆

256yv嘉泰姆

0.66yv嘉泰姆

56yv嘉泰姆

17006yv嘉泰姆

CXSD62936yv嘉泰姆

TDFN3x3-106yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

256yv嘉泰姆

36yv嘉泰姆

256yv嘉泰姆

0.56yv嘉泰姆

56yv嘉泰姆

3506yv嘉泰姆

CXSD62946yv嘉泰姆

QFN4x4-246yv嘉泰姆

CM6yv嘉泰姆

26yv嘉泰姆

16yv嘉泰姆

406yv嘉泰姆

4.56yv嘉泰姆

13.26yv嘉泰姆

0.66yv嘉泰姆

5~126yv嘉泰姆

40006yv嘉泰姆

CXSD62956yv嘉泰姆

SOP8P6yv嘉泰姆

TDFN3x3-106yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

206yv嘉泰姆

36yv嘉泰姆

13.26yv嘉泰姆

0.86yv嘉泰姆

5~126yv嘉泰姆

25006yv嘉泰姆

CXSD6296A|B|C|D6yv嘉泰姆

SOP8P6yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

256yv嘉泰姆

36yv嘉泰姆

13.26yv嘉泰姆

0.6|0.86yv嘉泰姆

5~126yv嘉泰姆

12006yv嘉泰姆

CXSD62976yv嘉泰姆

TDFN3x3-106yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

256yv嘉泰姆

46yv嘉泰姆

13.26yv嘉泰姆

0.86yv嘉泰姆

5~126yv嘉泰姆

20006yv嘉泰姆

CXSD62986yv嘉泰姆

TDFN3x3-106yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

256yv嘉泰姆

4.56yv嘉泰姆

256yv嘉泰姆

0.66yv嘉泰姆

5~126yv嘉泰姆

806yv嘉泰姆

CXSD6299|A6yv嘉泰姆

SOP-8P6yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

256yv嘉泰姆

4.56yv嘉泰姆

13.26yv嘉泰姆

0.86yv嘉泰姆

5~126yv嘉泰姆

160006yv嘉泰姆

CXSD621006yv嘉泰姆

TQFN3x3-106yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

256yv嘉泰姆

4.56yv嘉泰姆

13.26yv嘉泰姆

0.66yv嘉泰姆

5~126yv嘉泰姆

25006yv嘉泰姆

CXSD62101|L6yv嘉泰姆

TDFN3x3-106yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

306yv嘉泰姆

36yv嘉泰姆

256yv嘉泰姆

0.86yv嘉泰姆

5~126yv嘉泰姆

20006yv嘉泰姆

CXSD621026yv嘉泰姆

TQFN3x3-166yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

306yv嘉泰姆

1.86yv嘉泰姆

286yv嘉泰姆

0.66yv嘉泰姆

56yv嘉泰姆

6006yv嘉泰姆

CXSD62102A6yv嘉泰姆

TQFN 3x3 166yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

306yv嘉泰姆

1.86yv嘉泰姆

286yv嘉泰姆

0.66yv嘉泰姆

56yv嘉泰姆

6006yv嘉泰姆

CXSD621036yv嘉泰姆

QFN4x4-246yv嘉泰姆

VM6yv嘉泰姆

26yv嘉泰姆

16yv嘉泰姆

506yv嘉泰姆

4.56yv嘉泰姆

13.26yv嘉泰姆

0.66yv嘉泰姆

5~126yv嘉泰姆

50006yv嘉泰姆

CXSD621046yv嘉泰姆

TQFN4x4-246yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

26yv嘉泰姆

156yv嘉泰姆

66yv嘉泰姆

256yv嘉泰姆

26yv嘉泰姆

N6yv嘉泰姆

5506yv嘉泰姆

CXSD621056yv嘉泰姆

TQFN4x4-246yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

26yv嘉泰姆

156yv嘉泰姆

66yv嘉泰姆

256yv嘉泰姆

26yv嘉泰姆

N6yv嘉泰姆

5506yv嘉泰姆

CXSD62106|A6yv嘉泰姆

TQFN4x4-46yv嘉泰姆

TQFN3x3-206yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

26yv嘉泰姆

206yv嘉泰姆

36yv嘉泰姆

286yv嘉泰姆

0.756yv嘉泰姆

56yv嘉泰姆

8006yv嘉泰姆

CXSD621076yv嘉泰姆

TQFN3x3-166yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

206yv嘉泰姆

1.86yv嘉泰姆

286yv嘉泰姆

0.756yv嘉泰姆

56yv嘉泰姆

4006yv嘉泰姆

CXSD621086yv嘉泰姆

QFN3.5x3.5-146yv嘉泰姆

TQFN3x3-166yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

206yv嘉泰姆

1.86yv嘉泰姆

286yv嘉泰姆

0.756yv嘉泰姆

56yv嘉泰姆

4006yv嘉泰姆

CXSD621096yv嘉泰姆

TQFN3x3-166yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

26yv嘉泰姆

206yv嘉泰姆

1.86yv嘉泰姆

286yv嘉泰姆

0.756yv嘉泰姆

56yv嘉泰姆

4006yv嘉泰姆

CXSD621106yv嘉泰姆

QFN3x3-206yv嘉泰姆

TQFN3x3-166yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

26yv嘉泰姆

206yv嘉泰姆

36yv嘉泰姆

286yv嘉泰姆

1.8|1.5|0.56yv嘉泰姆

56yv嘉泰姆

7406yv嘉泰姆

CXSD621116yv嘉泰姆

TQFN4x4-246yv嘉泰姆

|QFN3x3-206yv嘉泰姆

CM6yv嘉泰姆

16yv嘉泰姆

26yv嘉泰姆

156yv嘉泰姆

56yv嘉泰姆

286yv嘉泰姆

0.56yv嘉泰姆

N6yv嘉泰姆

30006yv嘉泰姆

CXSD621126yv嘉泰姆

TDFN3x3-106yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

206yv嘉泰姆

1.86yv嘉泰姆

286yv嘉泰姆

0.56yv嘉泰姆

56yv嘉泰姆

2506yv嘉泰姆

CXSD62113|C6yv嘉泰姆

TQFN3x3-206yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

26yv嘉泰姆

156yv嘉泰姆

66yv嘉泰姆

256yv嘉泰姆

26yv嘉泰姆

N6yv嘉泰姆

5506yv嘉泰姆

CXSD62113E6yv嘉泰姆

TQFN 3x3 206yv嘉泰姆

COT6yv嘉泰姆

26yv嘉泰姆

26yv嘉泰姆

116yv嘉泰姆

66yv嘉泰姆

256yv嘉泰姆

26yv嘉泰姆

N6yv嘉泰姆

5506yv嘉泰姆

CXSD621146yv嘉泰姆

TQFN3x3-206yv嘉泰姆

COT6yv嘉泰姆

26yv嘉泰姆

26yv嘉泰姆

116yv嘉泰姆

5.56yv嘉泰姆

256yv嘉泰姆

26yv嘉泰姆

N6yv嘉泰姆

2806yv嘉泰姆

CXSD621156yv嘉泰姆

QFN4x4-246yv嘉泰姆

VM6yv嘉泰姆

26yv嘉泰姆

16yv嘉泰姆

606yv嘉泰姆

3.16yv嘉泰姆

13.26yv嘉泰姆

0.856yv嘉泰姆

126yv嘉泰姆

50006yv嘉泰姆

CXSD62116A|B|C6yv嘉泰姆

SOP-8P6yv嘉泰姆

VM6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

206yv嘉泰姆

2.96yv嘉泰姆

13.26yv嘉泰姆

0.86yv嘉泰姆

126yv嘉泰姆

160006yv嘉泰姆

CXSD621176yv嘉泰姆

SOP-206yv嘉泰姆

VM6yv嘉泰姆

26yv嘉泰姆

26yv嘉泰姆

306yv嘉泰姆

106yv嘉泰姆

13.26yv嘉泰姆

16yv嘉泰姆

126yv嘉泰姆

50006yv嘉泰姆

CXSD621186yv嘉泰姆

TDFN3x3-106yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

16yv嘉泰姆

256yv嘉泰姆

1.86yv嘉泰姆

286yv嘉泰姆

0.76yv嘉泰姆

56yv嘉泰姆

2506yv嘉泰姆

CXSD621196yv嘉泰姆

TQFN3x3-206yv嘉泰姆

COT6yv嘉泰姆

26yv嘉泰姆

16yv嘉泰姆

406yv嘉泰姆

1.86yv嘉泰姆

256yv嘉泰姆

REFIN Setting6yv嘉泰姆

56yv嘉泰姆

7006yv嘉泰姆

CXSD621206yv嘉泰姆

QFN 3x3 206yv嘉泰姆

TQFN 3x3 166yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

26yv嘉泰姆

206yv嘉泰姆

36yv嘉泰姆

286yv嘉泰姆

1.8|1.5 1.35|1.2 0.56yv嘉泰姆

56yv嘉泰姆

8006yv嘉泰姆

CXSD62121A6yv嘉泰姆

TQFN3x3 206yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

26yv嘉泰姆

156yv嘉泰姆

36yv嘉泰姆

286yv嘉泰姆

0.756yv嘉泰姆

56yv嘉泰姆

2206yv嘉泰姆

CXSD62121B6yv嘉泰姆

TQFN3x3 206yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

26yv嘉泰姆

156yv嘉泰姆

36yv嘉泰姆

286yv嘉泰姆

0.756yv嘉泰姆

56yv嘉泰姆

2206yv嘉泰姆

CXSD621216yv嘉泰姆

TQFN3x3-206yv嘉泰姆

COT6yv嘉泰姆

16yv嘉泰姆

26yv嘉泰姆

206yv嘉泰姆

36yv嘉泰姆

286yv嘉泰姆

0.756yv嘉泰姆

56yv嘉泰姆

1806yv嘉泰姆

发表评论
    共有条评论
    用户名: 密码:
    验证码: 匿名发表

热门信息
  • 最新信息
    推荐信息
    相关文章
    无相关信息
    推荐资讯
    脉冲滤波电路
    脉冲滤波电路
    双管正激电源
    双管正激电源
    MOSFET
    MOSFET
    Class-D功放
    Class-D功放
    ROHS标准
    ROHS标准
    逻辑信号处理电路
    逻辑信号处理电路
    电路图绘制
    电路图绘制
    高压驱动芯片技术升级趋势及核心创新方向
    高压驱动芯片技术升级
    CXSU6313SEPIC恒压方案简介
    CXSU6313SEPIC恒压方
    CXSD62557应用说明开关频率,配合高频低阻的电解电容
    CXSD62557应用说明开
    CD 电容与电阻对传导影响
    CD 电容与电阻对传导
    BUCK 拓扑 EMI 对策
    BUCK 拓扑 EMI 对策